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PoTmIAL FLOW

SUMMARY

ABOUT ELONGATIIl) BODIES OF REVOLUTION

By CARL KAPLAN

This report presents a nwthod of solving the problem
of acid and transverse poteniia? jkos aTound arbiira~
eI?on@ed bodia of Tevoi?ution. % 801&Oll$ of h-

@ZG8’8 eqJa.tion for the velocity potenii.ak of the &

and tTanaverse $OWS, the system of coordinuks being an

elliptic one in a meridian plane, are known to be of the

fouowing form:

03

$b=~AQ(NP.(P) (mid flow)

n=l

m

$+fLlwwm cos f?(transverse flow)

n=l

If a powetweri~ dimelopmeniof h in P is a.mwwd
as the equution of the nwn”dtin pro~ in elliptic co-
ordinates, the bowndury conditions of the two typm of
@w yield linear eguatiom for the deteminu.tion Of the

coejici.ents An and A,l. It is further shown thui a

kmnvle@e of th.ae coejbimts leads directly to the s-in.k-

source and doublel didibu.tiww cormponding to the
axial andtransveme$ows,respectively.

The thin-y ti applied to a body of revolution obtained
from a symmetrical Joukowsky profi, a 8hape re-
sembling an airship huU. The prw-ure dtitrilndion
a7d the tTaTMVeT8e-fOTCedistribution are caladaied ad

seine u examplm of the procedure to be foUowed in the
cme of an add aimhip. A section on the determina-
tion of india coefficients is also included in which
thevalidityof someearlierworkis quationed.

INTRODUCTION

There are two methods of handling the problem of
potential flow nbout a body of revolution. One, the
indirect method &t used by Taylor (reference 1)
rmd by G. Fuhrmann (reference 2) who computed the
pressure distribution by the method of sources and
sinks suggested by Rankine. Fuhrmann assumed
certain sink-source distributions and calculated the
pressure distribution for the streamline body resulting
from the assumed sink-source system. He also con-
structed models of the cdculnted shapes and measured

the pressure distributions over them when placed in a
wind tunnel.

The other method, developed by von K6rm&n
(reference 3), considered the direct problem; i. e., the
calculation of the pressure distribution over n given
streamline shape. He approximated the requisite
sink-source distribution by a computed continuous
system of sinks and sources arranged in stepwise con-
stant intensity. The various strengths were deter-
mined from the condition that the airship hull is a
streamline surface in the parallel flow and the flow
induced by the sinks and sources. By satisfying this
condition at an arbitrary number of points equal to the
number of unknown sink and source segments, von
K&rmtinobtained a system of linear equations for the
determination of the unknown strengths of the sink-
source distribution. He also treated the case of
transverse flow (references 3 and 4) by the distribution
of doublets along the axis of symmetry of the body of
revolution and calculated the strengths of the various
doublet se.mern%in a manner similar to that used for
the sink-source intensities.

The present paper is m attempt to treat the direct
problem according to the methods of the potential
theory. Thus, Laplace’s equation for the velocity
potential is set up in a system of elliptic-cylindrical
coordinates A, p, 0 and solved in conjunction with the
appropriate boundsry conditions for axial and trans-
verse flows. It is then c.ssur6edthat a power+eries
development of A in ~ represents the meridirmprofile
of the elongated body of revolution. The boundary
conditions for the two types of flow may then be ex-
pressed in the form of power serias in ~ valid for the
entire range of p. This method leads to two sets of
linear equations, each set infinite in number of equa-
-tions and each equation containing an infinite number
of unknown coeilicients which serve to determine the
velocity potentials for the axial and transverse flows.
Incidental to the major task of determiningg these
coefficients, the sink-source and doublet distributions
corresponding to the axial and transverse flows are also
determined. Thus the results of this method are essen-
tially the same as those obtained by the method of
von K6rmfm but are obtained in a more rigorous and
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direct manner. In von IWmfm’s mdhod, approxima-
tions are made prior to the analysis; whereas, in the
method presented in this paper, approximations are
made after the analysis has been carried through in a
rigorous manner.

FUNDAMENTALEQUATIONS

The fluid motion is assumed to be steady and irrota-
tional. There then efits a velocity potential 4,
which is, in general, a function of the rectangular
Cartesisa coordinates (z, y, z). In cases of rotational
symmetzy, however, it is appropriate to introduce the
cylindrical coordinates (z, p, L9)where z denotes the
distance along the axk of symme~, P(= H the
perpendicular distance from this mis, and 0 the angle
between the (z, P) and (z, z) planes. (See fig. 1.)

P(X, y, 2)

.---------- .------

/
Y

z

FIGURE1.

Furthermore, since only elongated surfaces of revolu-
tion are to be considered it is natural to introduce a
prolate-elliptic coordinate system in the (z, P) plane.
The equations of transformation from the coordinates
(z, P) to the prolate-elliptic coordinak @, q) are:

z=2a cash r cos q
p=2a sinh ~ sin q1 (1)

where OS~s~ and 025q<27r
Thus f=constit and ~constfmt represent confocal
ellipses and hyperbolas, respectively, the distance
between the foci being 4a.

For any point in space F’(z, y, z) then

1
z=2a(x*-1 +(1—&)* Cose

1
y=2a(X*—1 3(1—#)+ sin 0 $’)
z=2aAp

where x=cosh ~ and P.=COSq.
If, furthermore, the fluid iS incompremible the

velocity potmtid @ satisfies Laplace’s equation
A2@=0 and SiUCOthe 0, P, 0 system of coordimtw is
an orthogonal one, takes the form:

(3)

FLOW’PARALLELTO THE ASIS OFSYMMETRY

In this case the flow is the same for all meridian
planes (z, p) and therefore the velocity potontial @ is
a function only of x and ~. Equation (3) then reduces to

:1(’’-’)%1+:[(1-’’%1=0‘4)
If this equation is to be satisfied by a product

d=zjwb)
it follows that

which separatesinto two ordinary differentialequations

&l-A’a+cL=O
$k’%l+cM=O1 (5)

where c is an arbitrary constant.
Furthermore, if c=n(n+ 1), each of them equations is
of the lkgendre type and therefore the general solution
of equation (4) is

.

x
d= A.1’n(~)l’.b) (6)

n-o

This expression for @ has a singularity at infinity
sinca P=(A) is a polynomial of the nth degree in A and
is therefore iniinite for h= co. Since the region outside
a surface is to be considered and since it must include
the region at i.niinity, another solution for L(A) is
required. This solution, linearly independent of
P.(x), is the zonal harmonic of the second kind and is
denoted by Q(A) where

J
. dh

Q(x) ‘p’(x) A [P.(X)* J(Y-1) (7)

It -ianishes for A= co but has a singular point for
X=&l where it is i.niinitelike log (Ml).

Thus, for example, since PO(A)=1, PI(A) = h it is
found that

log~–1

. . .

It may also be shown that

Q(k)=;P.(x) log ~–lw

where K.(x) is a polynomial of the (n— l)th degree.



PO1’ENl’IAL FLOW M30U77 13LONGATED BODIES OF IUJVOLUTION 191

Another useful expression for ~n(~) is that due to
1’. ~eumaun (reference 5); namely

(8)

Eipmhg &, in decreasing powers of A,

.

~J
1

(LO)=; + _lA’11’n(h)dh
-o

Expressing
ence 5)

A/ in terms of zonal harmonh (refer-

i !.1
-) -

?/= z22 (2i–4k+l)i/
m+~]P’-’k()’)

-o

[“liwhere the upper limit ~_ ~ used depends on whether i is

-!Z-

[1~~~ andwhere [2n]=2.4.6. . .2n; [2n—1]=1”3.5 . . .

(2n–1) ; [0]=[1]=[–1]=1. AIso (2n–1) f=[2n–1]
[2n–2J,

Substituting this expression for X$ in the foregoing
equation for Q.(x) it follows that

i f-l
. 5’7

nw)=; +, -- (2i–4k+l)i / ‘
J[2i-2k+l][2k] -IPn(x])P’-U(xddA’

=0 =0

The zonal harmonics P.(AJ exe orthogonal functions
and satisfy the following relations:

/% O if r#8

JPrP#di,= 2 if r=s
-1 2r+ 1

E~Tanding the preced@ expression for ~(k) with
regard to i and writing the terms with equal indices of
k in columns and adding these columns, there is ob-
tained, using tho orthogonal properw of the Pn(h)’s,
tho following equation:

(n+2k)l
QJN=~2n+2 + ~1[2k1&,where n=O, 1,2,”.. (9)

k-o

This expression is convergent for [~>1 and divergent
for IAIS1.

Instead of being given by equation (6) the velocity
potential is now given by the following expression:

(lo)

which gives the general solution of equation (4) for
regions outside a surface of revolution and extending
to iniinity.

In cases of rotational symmetry *here the lines of
flow are in meridian planes, it is convenient to intro-
duce Stokes’ stream function #. This function arises
from the statement that the fluid is incompressible
(equation of continuity) and is related to the velocity
potential # according to the following equations:

(11)

The lines #= constant represent the streamlines. It
may be remarked tha$ unlike the two-dimensional case
where both the stream function and the velocity po-
tential satisfy Laplace’s equation, Stokes’ stream func-
tion does not satisfy it.

The introduction of the variables X, p into equations
(11) by means of equations (1) leads to the followhqg
relations:

If a substitution is made for $ from equation (10) and
P.(p) is replamd by its value obtained from Legendre’s
diiTerentialequation, that is:

P.(p)=– 1 Id[(1–#)*T@+1) ~

it is found that
.

2#=2a(l–#)(X’–l) “A’ ‘Z ‘A+cOnstant (13)n(n+l) dp d~
n-1

Furthermore, if the body of revolution is movimg
with a velocity V in the direction of the ati of sym-
metry z, it may be conveniently supposed to be at
rest and the fluid to have a translation – ~ super-
posed on its actual motion. This consideration adds
a term 2UUAPto the velocity potential and 2a:U(l – pz)
(A’– 1) to the stream function. Therefore

[2
.

#=2(z’(1-p3(x’-l)
A, dPndf& 1——+1 (14)aUn(n+l) dp d~

n-l

At tho surface of the tied body of revolution the
normal velocity of the fluid mtit be zero and therefore
the boundary must coincide with a streamline
# = constant, say O. Hence the boundary condition at
the surface is given by

m

2
Am d&d& +cU=O

(n+l) dw dx
(15)

n-1

In order to find the veloci~ components u~, UP,in
the directions of the coordinate lines h, P,respectively,
it is to be noted that since the system of coordinates is
an orthogonal one,

‘4 d up=–%u~=— — an
d8h

where d&=dz$+dpz=&g+d8p2

71946—3*14
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By means of the equations of transformation (l), it is
found that

V?
&=2a & ‘dh.

and

and

Hence:

‘ [’X2-’)W+’1-’%91‘“)“=4a’(Xi-M*)

SINK-SOURCEDISTRIBUTION

The distribution of sinks and sources is assumed to
lie along the segment of the axis of symmetry 2,

—2aS z1=2a, and to be of intensity 1(zJ per unit
length. At any point (z, p) in any meridian plane the
velocity potential due to this distribution is given
(reference 6, p. 60) by

J
I(zJdzl

@=;r :ti[(z-zJ*+p’]*
(17)

For points lying on the z axis but outside the distribu-
tion, the velocity potential is given by the simplified
expression

Substituting for z and z,, %X and 2ah, respectively,
the preceding equation takes the form

Finally, substituting for @ horn equation (10) and
noting that P.(1) = 1 for all values of n,

This is an iuteggal equation for the unknown function
1(2aAJ. It maybe solved in the following maaner:

From F. Neumann’s expression for & (x) given bv
equation (8) the following developma-t &“s-&geste~
for the distribution function:

where
It then follows

I(2aAJ =
x

%P*(XJ
nnl

—lsxsjl
directly from equation (8) that

for all value9 of X.
Hence &=21r&

and I(2aXJ=27r~fi=Pm(XJ (19)

Thus, given the potential function ~, that is the
A=’s, thisexpression determines the equivalent sink-
source distribution.

FLOWNORMALTO TEEAXISOFSYMMETRY

The diflxential equation for the velocity potential in
the case of transverse flow is given by equation (3).
Recalling that this expression is Laplwe’s equation in
the coordinates k, p, O,it may be solved by supposing
@ to be a product IV(X,y) 13(0). Replacing I#Jin equa-
tion (3) by this product, the following pair of differen-
tial equations is obtnined:

1

The general solution of the fit equation is given by
R=A COSk &+B sink 0

where A and B are arbitrary constants.
Putt@ N(A, p)=L(x) ~(p) in the second equation
leads to the following pair of ordinary ditTerentird
equations:

where c is an arbitr~ oonstant.
Both of the latter equations me of the form of the

d.i.ilerentialequation for the associated Legen&e func-
tions provided that c=n(n+ 1). Accordingly,

M(p) =Pn’(JI) and L(x)= P.’(x)

where, for example,

$dkPnb)
P=’(p) =(l-P? ~

The general solution of equation (3) may then be
written as

This expression, however, has a singularity at infin-
ity and since only the region outside a given surface of
revolution is of interest, the &to region, or the
neighborhood of h= w, must be considered. Therefore
Pa’(x) is replaced by the msociated Legendm function
of the second kind Q.*(A), where by definition,

If the body of revolution mows with a uniform
velocity V in the direction of the x axis, it may be
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supposed to be at rest and the fluid to have a transla-
tion —V superposed on its actual motion. Then

4=41+ZV (23)

Consider the body profile in any one of the meridian
planes 0. At any arbitrary point of it the normal
derivritive of @is given by

(24)

Since the normal velocity along the meridian curve is
zero, it follows from equations (23) and (24) that

Also, z=p cos O,so that

Therefore

In order that the condition of no flow normal to
the body of revolution be yalid for all values of O,
there must be chosen from among all the solutions
given by cqurkion (22) that one which has cos o as a
factor; namely:

$h=&nlPn’(w’(x) Cose

or

An,
‘here “=23

Furthermore

so that equation (25) becomes

Finally, by mews of equation (26) and the di.fler-
entitd equation for the Legendre polynomials the fore-
going boundary condition takes the following form:

.

2[ d(xp) dP.dQ=
‘n x dp dh

1

d(h) ~,_——n(n+l).&na
‘7 ‘2

n-l

DISTRIBUTIONOFDOUBLmS

The doublets are assumed to have their axes in the
z direction and to lie along the segment —2US ZI~ 2a
of the axis of symmetry z. The velocity potential at

any point (z, p) of some meridian plane O then takes
the form (see referenee 6):

spcoso m
+1=~

J(z,)dzl
-2 J(z—zJ2+Pq~

where J(zl) is the intensi~ of the doublets per unit
length.
Substituting for +, from equation (26) it follows that

For points lying on the z axis but outside the distri-
bution this equation takes the following simp~ed
form:

E
“ n(n+ 1) c dQ.—_V2 ‘~–162’ J

: J&I/My ~281
u-1

( ).
where Z1is replaced by 2aXl, z by 2aA, and ~ , ~

n(n+ 1). ~h .
by z E an integral equation for the un-

known function J(2aX,). In the solution of this inte-
gd equation it is necessmy that a development of

(A–\l)’ as a series of Legendre ploynomials in Al be

obtained. The form of this development is suggested
by Neumann’s equation (8). Thus assume that

Then substituting this expression for & in. hTeu-

mann’s equation and making use of the orthogonality
relations satisfied by the Legendre polynomials, it is
found that

bm=2n+l
Tharefore

1— .
A— A, 2m(2n+l)P.(h)QJ~)

n-l

Differentiating this last exprtion once with regard to
x and once witi regard to Xl, it follows that

2
“ 2n+ 1dP.(h) dQn(N

(&3=-nm, ~~ dx

Equation (2S) then becomes

x
v mCnn?!g=

n-l

2
‘&~’ J(2ax]) ~ dx–3* m (2n+l) ~

n-l

It is now obvious that the following awunption
be made: .

J(2ax,) = –8ra’V(l – A,9
x

dP_.
cmdkl

in-l

(29)

must
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and substituting this expression in equation (29) it
followq that

In order that this equation be valid for arbitrary val-
ue9 of A,

k= c<

and therefore

Thus, given the velocity potential @l, that is, the
C. ‘s, this expression determines the equivalent doublet
distribution.

DETERMINA’ITON OF TEE COEFFICIENTS A. AND C.

Any symmetrical proiile may be repraented by a
power series in ~(=cos q). That is

-

zA= a+l’ (31)
r-o

The rapidity of convergence of this series depends,
however, on the choice of origin with respect to the
prolile. Site A=aa defims an ellipse, the rapidity of
convergence of the foregoing seriesmaybe looked upon
as a measure of the resemblance of the profile to the
ellipse h=ao. The proper choice of origin may be
attaiqed in the following manner. The radius of
curvature R of an ellipse at the end of its major axis
is given by

R=;

where A and B are its semimajor and semiminor axw

respectively.
Eliminating T from equations (l), the following

equation of a system of confocal ellips= results:

(2(2mdsh~)’+ (2a ~h ~)’ = 1. (The distance between

foci is 4a.)

In terms of elliptic coordinates then

Furthermore, for an elongated ellipse the semimajor
axis 2a cosh ~ is large compared to the semiminor axis
2a sinh ~. This limitation means that { is small.
Neglecting powers of ~ &mher than the second it
follows that (see reference 7)

R=2@ (approximately)

The~ends of the ellipse are at

+2a cd f=+
%

1+$+ “-)=+a+:)
(apprcmi?nately)

and therefore the focus of an elongated ellipse very
nesrly bisects the line joining the end of the serninmjor
axis and the center of curvature. Thus the proper
choice of origin is the point bisecting the line of length
4(Lextending from the poi.d midway between the lead-
i.rg edge and the center of curvature of that edge to a
point midway between the trailing edge and the center
of curvature of that edge. Having thus chosen o
reference home (z, p) in which to present the profile,
the next step is to obtain the series equation (31).
This equation may bc obtained with the help of the
following mqnwsions. From equation (1) it can be
found that

‘=$m+~ (32)

‘=WFRWHWI )

where —lsps 1.
A series of corresponding values of X and p are thus

obtained. In order to express h as a polynomial in p
of, say, degree n, it is most convenient to employ the
method of least squares for determiningg the (n+l)
constants a, (reference $).

FLOWPARALLELTOTHEAX19OFSYMMETRY

The boundary condition for this type of flow is given
by equation (15). In that expression functions of the

a~type ~ appear and thesmare to be expremed as power ,

series in p.
Suppose the meridian profile to be given by tho fol-

lowing analytic expression:

(33)

dQ.
Then on the profile, ~ may be looked upon M a

function of P and can be developed in a Taylor series
in the neighborhood of P=O or X=ao. That is,

Substituting for X—s. from equation (33), it follows
that

In the following the axpansion of S’ in powers of ~ is
to be determined (reference 9, p. 122), p being any
positive integer and where

u
q-o
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mm

s= xxal ,r ‘l,p-r Pp
r=o p=r

Expanding & with respect to r and writing the terms
with equal indices of p in columns and adding th~e
Colunlm,

~=x’’x~r”’,-,=xqp’p
p-o r=O pno

where

‘z,p= T,’l,p-r’l,r

r-o

In a similar manner,

where

where

.

EF= Q,p IF’
p-o

.

‘3,P= 2al,p-r ‘2,r

r=O

and, in general, it is permissible to write

.

2
P= at,ppp

p-o
where

P
ai,P=

z
Oif r~O

~,%, a~-1,,~d ~,r=l ~ ~_.—
r-o

Hence

P“

Expanding according top and writing the terms with
equal indices of q in columns and adding these columns, ,

m

dQ,_ x$-’ ‘v-H/&

~– P’ pi- “w
q-o p-

(34)

and so on.
The boundary condition also contains terms of the n n-l

-,—

F72~_2 “— 1]! ~_2,

2 2 (–O~(n-2JY[2~l Ktype ~ where PAP) ti the Legendre Polynofi~ in p P.(,u) =

of degree n and is given by j=o

(Hat’or@’’s~1even
where the upper limit for j is

odd

>.

xThen, ‘~= ~mo (–l)j
[2n–2j–1] ~.,til

7n—2j—1)/ [2jqp (37)

(35)

(36)

.,
‘Q ‘PSubstituting for ~ and ~ the expressions ghm by

equations (34) and (37) into the boundary condition
equation (15),

u-2 n-l

X*%T ‘2”’’’-1] ‘n-’’y%%%+a”+o”’o
(– V(n_2j-1)1[2~1

n-1 j-o g-o

Expanding according to powers of n and writing the terms with equal indices of j in columns and then adding
these columns,
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Vj—l+g=m this becomesPutting n–.

Espanding with respect to g and writing the terms with equal indices of m in columns and adding these columns,

If this espwssion is to be valid everywhere on the boundary surface, it must hold for the entire range of U, It
follows that the coefficients of the various powers of y are identically zero. Finally, the introduction of k and
n by means of the substitutions g=m –k and p=m–n, respectively, leads to the following expression of the
boundary condition:

foil

xxam.=a.t

2
[2j+ 1+2kl~2H1+E

- ‘-=-””’””m (–1)’ (2j+l+k)(2j+2+~) [2Jk!(m_n)/
n=ok-o j=o

where

Equation (39) represents a set of linear equations
irdinita in number and containing an iniinite number
of unlmowns Am. It provides a formal and rigorous
solution of the problem of potential flow about a
body of revolution, parallel to its axis of symmetq.

In the foregoing equations the only *owns are
the A=’s. The ~,~s are related to the coefficients of
the power series of h in P (giving the meridb proiile
equation (33)) and are evaluated by means of equa-
tions (35). Finally, the Q,’s and their derivatives are
welldeflned Legendre functions.

For example, if the meridkmprofile is an ellipse~=%,
then equation (39) becomes

2 [2j+2m+ 1]d@H,+=m(–1)j(2j+l+Ai~(~+ 2+m)m! [2ji
-0,—..

= —60”aU

For ?n=l, 2, 3, . . . this is an infinite set of linear
homogeneous equations for the unknowns A2, ~,
. . . . . . and, since the determinant of the coefficients
is different from zero, the only solution is that A2,

(39)

A3, . . . . . .. are zero. From the first oquotion,
i. e., m=O, it is then fetid that

A,=–2;;=–1
2aU

ao+l a.
duo

~ log —_—
aO—l u#—1

Hence

“-.+i’’ogl )”)”———
~—l ao2—1

If A and B are the seminmjor and semiminor axes of the
meridian ellipse and e its eccentricity, then

2a=Ae, G=;, 2a(@2—l)~=B

so that

Il%is result agrees with the well-known expression for
the velocity potential of rLprolate ellipsoid of revolu-
tion (reference 10, p. 132).

FLOWNORMALTOTHEAXISOFSYMMETRY

The case of flow normal to the axis of symmetry will now be treated in a manner similar to the case of pardlc]
flow. The boundary cendition is given by equation (27):

From equation (33),

(40)
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Referring to equation (38) it follows that

.

+~(n+z)al.p‘+’2””22(– l)J2~+ml:&2~ CSj+l+=-g2~ d’+lQgfil+.-Q

n-o m-0 g-o j-o ,-0 “ ‘*1
or

Analogous to equation (34)

Hence, in a manner similar to the derivation of equation (38)

2 ~(~+I) G&’aQa) =
n-1

~Substitutingequations (40), (41), and (42) in the boundary condition and equating the coefficients of the various
powers of p equal to zero, the following aet of equations is obtained:

ond (after rearranging as for equation (39))
I

(43)

hn .

F+GJ~y//* ~_l#j+l+M
‘~c2w+n3

n-0 m-o -o

h+l u .

xx

aH1-x ,m-~

z
(–ly(z~+~) @~+l+7w’H+2ml

dh-n+l/& ~

)-(h+l) C,fi~- = (h+l)al,b-1
f(h+l–n)l

n=o m~O j=o I

whmoh=l,2,3, . . . . . CO.
This set of equations represents a formal and timoroussolution of the problem of potential flow about a body

of revolution with flow normal to the axis of symmetry. The only unlmown quantities are the infinite number
of C.%. The other quantities appearing in the equations are determined as in equations (39).

II the meridian proiile is an ellipse A=%, the aM’S we ~ zwo and, from tie second ~~r~on of equa-
tion (43),

where h=l, 2, . . . . W.
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This expression represents an idn.ite set of linear
homogeneousequations in the unknowns C,, G, . . . . .
and, since the determinant of tie coefficients is ditTer-
ent from zero, it immediately follows that the only
solution is C2=CS=C4=. . . .=0. Ihwm the first
expression of equation (43), it follows that

This result could have been easily obtained from the
general expression for the veloci~ potential given by
equation (26). Thus, assume that

+1=2(ZV cm e(A’–l)~(l–/P)W7, ~+*

If the body moves in the positive direction df the y
axis with constant velocity V, it may be supposed to
beat rest and the fluid to have a translation – Vsuper-
posed on its actual motion. Accordingly

dJ=’2~v Cos fo’-l)w-#Y@ld#+1)

At the surface of the ellipsoid of revolution gener-
ated by the ellipse X=aO, the normal velocity of the
fluid must be zero. Therefore

From Legendre’s equation

(m2–1)$$=-%$$+2Q1 (G)

Hence (see reference 10, p. 133)

In the appendix an application of the boundary con-
dition (equations (39) and (43)) for &al and trans-
verse flows, respectively, is made to a body of revolu-
tion obtained from n symmetrical Joukowslg- profile.

INERTIACOEFFICIENTSOF BODIESOF REVOLUTION

It is of some interest to obtain the coefficients of
inertia for axial and transverse flows and also to com-
pare them with those of an ellipsoid of revolution of
equal fineness ratio (references 11 and 12).

When a body moves in a fluid at rest at iniinity the
total kinetic energy of the fluid is given by

2T=–uJf&B (44)

where d is the velocity potential of the fluid motion,

‘+ he normal derivative of @where the positive direc-&t

tion of the normal to the surface of the body is into the
fluid and the integration is performed over the surface
of the body; u denotes the density of the fluid.

FLOWPARALLELTOTHRAXISOFSYMMETRY

Since the veloci@ potential of this type of flow is
independent of the angular coordinate O,the following
equation may be written for the element of surface:

dtl=2rpd8

where d-sdenotes the elemaut of length along a merid-
ian prcdile. Hence,

If the body moves in the direction of its a.. of sym-
metry with a uniform velocity ‘U the boundary
condition i9

Also, according to equation (24)

Therefore,

S[ I2T=–8mu2uu1@(1–p’)A~-(A2-l)vd~
-1

Ii general then

If M is the mass of fluid displaced by the body, then
the coefficient of inertia k. is the quantity multiplying
MU’ in the expression for 2T.
If the body is a prolate spheroid k=% the foregoing
expression for 2T becomes:

(46)

-1

But 2a=Ae, ~=~ and !k(~’— 1)*=B where A, B

are the semimajor and smi.minor axes, respectively,
and e the eccentricity of the elliptical meridian section.
Therefore
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The coefficient of inertia for a prolate ellipsoid in
uniform axial motion is then given by

>log~e–l
ka= ~ l+e—–~ 10 —1—8 2e ‘l–e (47)

(See reference 10, p. 144)

Equation (46) is now evaluated for the caae of a
body of revolution obtained from the Joukowsky pro-
file e,= O.15, ~=0.10. (See appendix.) The volume
of this body is found to be

Q=++W3X0.05342

so that the expression for 2T may be written:

2T=2fr(2a)3X0.003139
UQV

$(2(z)3X0.05342

or ka=0,0881. (See table I.)
Compare this value of k= with that of a prolate sphe-
roid whose fineness ratio is the same as for the above-
mentioned body of revolution. The iheness ratio f is
defined as the rrLtioof the length to the maximum
diameter of the body. The mmci.nmm diameter is
obtained from equation (53) by means of the condi-

‘P–O and the length of the body is given by
‘ion &–
l=2a(A,=1+Ap._J. By mems of these exprwions it is
found that j =4.20S. The fineness ratio for an ellipse
is given by

A 1

or e=
J–

1– ~ =0.971
f

where e is the eccentricity of the ellipse.
Substituting this value of e into equation (47), the

following value of k=is obtained,

ka=O.0757

A theorem enunciated by Munk (reference 13) states
thnt when the disturbance caused by a body moving in
an infinite fluid is replaced by fictitious sinks and
sources, the total mass is the sum of the products
obtained by multiplying the intensity of each source or
sink by the potential of the parallel flow. This
theorem will now be shown to be onIy a first approxi-
mation and to hold exactly only for ellipsoids of
revolution. Thus from equntion (19),

m

EI(ZJ =2T A. P%(x,)
n-l

where zj= 2ahl
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l?he strength per length dzl is then

u
n-l

The veloci~ potential at (zI, O) of the parallel flow is
given by

$=2a Uh,

Hence, according to Mnnk’s theorem

2S
1

2TtOt.l=Smra2U An AI PS(AJ d~l
–1

n-l

or
A,

2T,om1=~ir(2a)8uF2x

Therefore

(4 r(2a)3 Al—_
)2Tfl&= 2~2aU 1 m

where Q is the volu’e of the body and ill is the mass
of the displaced fluid.

The coefficient of inertia for axial flow is therefore

This expression for k. is valid for a prolate ellipsoid
but is not valid for a more general shape.

It is obvious from this expression that Munk’s
theorem applies exactly only to ellipsoids of revolu-
tion since only the coefficient Al appears.1 In order to
provide a numeric.d comparison between Munk’s
theorem and the exact method, the foregoing equation is
evaluated for the body of revolution whose meridinn
curve is the Joukowwky profile c1=O.15, @= O.10. It
yields a value k.=0.0717 as compared with the more
exact value ka=O.0S67 alrendy obtained by means of
the fundamental equation (46).

FLOWNORMALTOTHSAXfSOkSYMMETRY

For flow normal to the axis of symmetry the velocity
potential depends not only on the elliptic coordinates
h, P, but also on the cylindrical coordinate 0. Hence,
the equation for the element of surface dS is

Cix=pd$ds

and equation (44) becomes

2T=–uf.fP#&i.9 d$

If the body moves in the direction of the transverse
axis Oz with a constant velocity V the bound~
condition is

1Theaboveafffckn of Munws thmemhesbeanfrondtobeinmnwit.Utk tok+nottdtbt thevolumeoftheMy contefm all of the mefffdmta-4.fmplfdtly.)
Thfstbmemmay be readily veTMHI by applylngClreen’Ssemndtheoremto the.qmcefntenmltothesbmeendenckuhwtheappropriatedfstrfbutlorIofsinks@
.wwcaT. Thmff%-U?and.%.*(whaA@+Y-0),Green’s.wondthwm@thatWithwuutfon(44)hwwihtelyyf@MstiefoIlowfngEa_preMonon MnnFs thwrexn:

f f f fi-&= dr.J JfUi.y d,2TP.U+VJ (v~me of bOdY)-- .
u .
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fiso, in general I From equation (45), it follows that
.

zf$=2a V cos 0(A2–1)*(1–p~~
dP%dQ=

C“GX
~ds=-8a2(l-p’)~ (X’–l)~

Hence n-l

J–I

For a prolate spheroid, X=ao and

C,dQl
+=z~v ~s e(~’–l)i (l–P’)i ~

where

(/la+A@)

Therefore

(See reference 10, p. 145.)
For the body of revolution whose meridian curve is

the JoukowskY profile a= O.15,E’=O.1O (see appendix)
it is seen from equation (48) that

uuV’(2a)3X0.059587
2T= 4 Q= O.8366XMV

3
r(2a)3x0.05342

Therefore kT=O.S366. (See table II.)
Accord& to equation (49) for the prolate ellipsoid

of equal fineness ratio j=4.208 and kT=O.8689.
According to MuWs theorem the inertia coefficient

kT of transvemeflow may be obtained hm the doublet
distribution along the ask of symmetry. Again, as in
the case of asial flow, this theorem is a first approximat-
ion and holds exactly only for ellipsoids of revohtion
since an expression for k~ is obtained that contains
only the coei%cient Cl. Thus from equation (30) it
follows that

Then according to Munk

J 1

2Ttotai=uv _l

(4s)

J(2ah,)2adk,

M2Tt0,=l=—16m#G=V’ ‘c. dpn dpl d~l
:l(l–%W

n-l

since

g=l

Hence

2T,.,.;= – ~ira(2a)3W71

and

2Tfiti= —
~x(2a)3Cl+Q

Q
Mv~

or

~ r(2a)3C1+Q

‘T=-——n———
In order to give a numerical comparison between

Munk’s theorem and the exact method, the fore-
going equation is evaluated for the body of revolution
rvhosemeridian curve is the symmetrical Joukowsky
profile~=0.15, ~=0.10. It yields a value k~=O.8210
E compared with the more exact value kT=O.8366
]btained from the fundamental equation (48).

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,

N’ATIONAL ADVISORY COMMITTEE FOR AEItONAUTIOSj

IMWLEY FIELD, VA., A’oremhr 12, 1934.



APPENDIX

APPLICATIONOF THE ANALYSISTO SURFACESOF
REVOLUTIONOBTAINEDFROMSYMMETRICAL30U-
KO~SKY PROFILES

By means of the mapping function

(50)

the circle kl of radius u in the {’ plane is transformed
into the line segment (—%, O; 2a, O) in the f plane
and the circle k~of radius (1+el+q)a with center at
(q a, 0) is transformed into a symmetrical Joukowsky
profile J in the ~ plane. (See fig. 2.)

f’ f’plone
P f plom?
t

~WJEE LL-MOpphg Ofa OkUkIMO a SWUJM&k31JonkmvskyPI’otlb.

If in the ~’ plane HJ=uec”, PO=ae:, angle POQ=q,
and angle. PQz’ =+ then, according to the law of
cosines,

$@m=l+2~ ~os ~+& (51)

Again, by the law of sines

Putting f’=a~i’ into equation (48),

~=2(z cosh (~+iq)

or z=2a cosh g cos q, p=2a sinh g sin
The latter two equations are, in fact,

(52)

~
the equations of

transformation from the rectangular coordinates (z, p)
to the elliptic coordinates (f, v). Since (z, p) refer to
points of the Joukoww& proiile J, using equations (51)
and (52), the following parametric equations of the
system of symmetrical Joukowsky profiles may be
obtained

~=4+2av+w4
28 +25(1 +LV+69M

A-1-v 1
(53)

J
where X=cosh f, P=cos q, and v=cos @ (the inde-
pendent parameter).

From these equations A can be e.spre.sed as a power
series in p by meam of a Maclaurin’s expansion in the
neighborhood of ~=0 (i. e. v=—~). Thus,l

(X=(LI l+cq+*-&+&” . . .
)

(54)

where

FLOWPAR’kLELTOTHRAXfSOFSYMMETRY

Equation (39) is a set of linear equations for the
iniinite number of unknown coefficients Aa and pro-
vides a solution of the problem of axial potential flow
about a body of revolution. In practice it is necessary
to evaluate only the fist few coefficients An. From
equation (39), neglecting the An’s after A6, the follow-
ing equations are obtained:

1TMpwerSWM~ th form
x-aO(+ 4 ihv

In fax Uthe expredon for P from equation (s3) k herekr.WzWtntai the oqtmtforr
for A is obMrred.

201



The coefficients of the unlmown As’s can be calcu-
lated simply by a knowledge of power-series develop-
ment of x in ~ (i. e., the quantities ao,IZI.0,al,l, . . . are
obtained from equation (33)). The zonal harmonics
Q (UO)me given by means of the recursion formula:

(n+l)Q+,(ao)– (2n+l)a0a(a0)+@X-l(G) ‘o

I In the application of this recursion formula it is necw-
1 SM’Y~ ~c~ate QO(UO) ~d Q,(uJ independently where

QA)= ;k ‘~ md Q,(uo)=uoQo(uu)-1

The tit derivatives
dQ*
G

are then obtained from

I following relation:

@ independently.where it is necessary to determine
a’%

In order to calculate the l@her derivatives the pre-
ceding recursion formula may be repeatedly differen-
tiated with regard to %. The higher derivatives of
Qo and Q, are obtained independently by means of the
(r–l)th derivative of Legendre’s differential equation:

(G&l) ‘*+2rao#S – (n+r) (n–r+l) ‘~= O

H the constantsm, al,l, W, . . . and the VariOUS
derivatives of Q, are known, the coefficients of the
unlmowns A, in equation (54) are easily calculated.
The resulting system of linear equations can then be
solved for the Al’s which in turn determine the poten-

:66)

the

tial function @ given by equation (10). A knowledge
of the potential function yields directly the velocity u
given by equation (16). Finally, according to Ber-
noulli’s equation, the pressure p on the surface is
&WIl by . .

P+- @=Po+ ;Pu’

The numerical work is straightforward but somewhat
tedious owing largely to a lack of tables of the zomd
harmonica of the second kind.

As an illustration of the procedure here outlined,
consider the body of revolution whose meridian curve is
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the Joukowsky profile (reference 14) deiined by cl= 0.15
and q= O.10. (See fig. 2.) From equation (53) there
can be written then for the power-series development
of h:

L=l.02340+0.02630P+ 0.007476PZ
—0.0000273P4+ . . . . (56)

n very rapidly convergent serie9.

Here

%=1.02340, aI,o=O.0263, a,,,=O.007476,
al,2=0, ~~= —0.0000273, . . . .

The zonal harmonics of the second kind and their
derivatives are given by table Ill

Substituting these numerical values into equations
(65) the following set of five linear equations is ob-
tained for Al, A*, ~, ~, and Ab:

19.385 Al – 3.780& +1.400 ~=2aU’

10.372 Al– 7.636 A,– 2.342 &+ 4.333 &+ A+)

– 1.152 A,+ 1.294 A,– 0.810 A3– 0.850 A4+ f&=()

– 0.600 A,+ 0.685 A,– 0.763 A,+ 0.300 ~+ &=()

–27.957 A,+39.785 A2–67.432 &+63.549 ~+ x&=o

The solution is given by 2

A,= O.0573x2aU, A,= O.0726X2aU, i&= O.0296X2aU, A.4=0.0065X2aU, A= O.0015X2aU

The sink-source distribution obtained from equation (19) is:

I(2ak,)=4~aU(-0. 0339+0.0157A,+0.0M6 X?+ O.0606A?+0.0283Xt+ O.Oll9ll~

Figure 3 shows a graph of this function with
I(2a~J/4maU as ordinate and kl as abscissa.

I

Fmrmm 3.—Slnk-sonrw and doublet dlstrfbntions.

In order to obtain the pressure distribution, the
following exprmions can be evaluated at a su5cient
number of points of the boundary:

(57)

(58)

and then substituted into equation (16) for @ where u
is now the velocity at the surface of the body with the
body considered to beat rest with reggd to the fluid.
The velocity u is calculated by menns of the following
expression:

Note here that the velocity potential

#=2au0.0573 P,k)Q,@)+O.0726 F’s@)@(Y)+ . . . +0.0015 P,(p)a(p)]

is exact for the body of revolution obtained by super- 1.0
posing a uniform velocity U on the flow from the sink-
source distribution given by equation (58). This body
is a very good approximation to the actual body
obtained by revoltig the Joukowslrr prdle about +“5

the axis of symmetry, so that in calculating the pres- ~
ble to use the (x, p) ‘0sure distribution it is permissi —2$

values as given by equation (55).
Table IV shows the sequence of operations to be fol-

lowed in obtaining the premure distribution and figure
-.5-

1lku~E4.-ThwretfwdprRUUM
4 presents graphically the pressure distribution.

WntIon (axfalSow).

$In lb exactform the eyst8mmntafnsan fmkdta numberof eqnatfons wftb an irdnfte nmnbar of unknorvneAI, AI For pmetfcal
foflowfng method of sdation fe snggmtd

,---- ~ however, the
Snpyse the system of aqnatfons to heve beanmlvIM to an arbitrary d- of ap~tfon, SY tbrea Then te thfs solu-

tlon there mrreqxmda a deflnfte dnk-mmm (or donblat, FLYthe casemay W dkibntfon from wbfeh mn be obtrdned the mr=mnti PCOffleand ham a & P)

mrve. Thk(&Jmme mnthaobommpmxl tothe(& p)citme of theaotaelprofIla. Incmder tifmpmva theapprexfmatfoq tbe &na@g)c imecanboshfftwf
fn MI&a manner that a ro@Mfcm of the pre- of sintfon, to the same d6grm of apprexhnatlen, yfafds a new system of & JI)valnw diner to the aolrmlW of (A, p)
vafrm than the tlrat apprcmimatfon. In thfe manner tie~ahtid onm~tititid qof~~hob~

.
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FLOW NORMAL TO THE AXIS OF SYMMETRY A; CI+A?C,+A2G+A:C4 +A15CS=6

From equations (43), for the iirst five coefficients A~Cl+Aiz~+A~~+A~C4+A~C6=~ al) f-a (60)

G, G, G, C4, C. the following set of linear equations where i=2, 3,4, 5
can be obtained: and
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(61) .

Again, substituting the numerical valuea given by equation (53) and table III into the foregoing repre-
ssions,there result the following equations:

–22.402 Cl– 1.363 C2+ 34.018 ~+ 2.578 c,– 39.602 C,=l.02340
25.036 CI–67.392 Cz– 45.658 ~+163.240 Cd+ 66.762 (?6=0.05260

—20.665 01+78.034 ~—132.860 Ca—221.940 04+497.330 C6=0.02243
– 15.235 0,+64.050 (&178.260 ~+202.310 04+391.330 05=0

10.437 G—46.495 02+150.380 02-361.150 C4+197.350 0s=0.00014

The solution is given by C4=–O.00028

C,=–O.0486
C,=–O.00005

02=-0.0178 The doublet distribution function J(%A,) then be-
G=–o.0027 come9:

J(2ak,)=8ra2V(l– Al’)(0.0447+0.0512 Al+0.0187X12+0.0049 k?+0.0022A?) (62)

The graph of this function with J/8~a2V as ordinate
and h1 as abscissa is shown in figure 3.

DHI’ERMINATION OF THE TRANSVRESE!-FORCE DISTRIBUTION

When the axial flow is combined with the transverse
flow some information regarding the distribution of
forces over the surface of the body can be obtained by
introducing the notion of the transverse-force coeffi-
cient. For the pressure clillerence at the surface,
according to Bernoulli’s equation:

P–PO=;(U’+V2-F)

where .po is the pressure at an infinite distance from
the body and q is the velocity of the fluid at the

surface, suppos@ the body to be at rest and the

fluid to strike it at an angle a where tan a=;.

. Now q has three components-in the directions h,
a%,,and pall. They may be denoted by gk, Q, and go,
respectively. Also denote by u~ and up the velocity
components of the axial flow and by zA,qi the velocity
components of the transverse flow taken in the plane
0=0. Then,

~h=UL+fi cos e
&=up+vp cm e
qe=va sin o

Introdutig these values into Bernoulli’s equation,

1

1P–PO=2 U’+ V+Lh2–U,2–fi2 COS’ O–VP’ COS’ 0–v8* tig 0–2(UAfi+UPVp) COSe
J
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It k Only the term I Elemperer defines the transveme-force coefficient by

U(WX+UPO.JCos L9=a(zl5) Ccs e

that need be considered, for the other terms have equal
values for 8 and H and accordingly vanish when
integrated over the entire cross section. The resulting
transveme foroe, relative to an annular element of
width unity, is therefore

dQ . Y~=u $b)00s’ e po%=ump(tifi)

dQ

P=
z (7ziJ)

=277P~

;(U’+V2)

By means of the velocity potentials of the axial and
tr-&sverse flows this last efiression takea the following
form:s

Tablea IV and V give the ‘numerical data for the
evaluation of the righhhand side of equation (61) and
figure 5 represents graphically time numerical results

L

FmUEE 5.–~0r93 dhtlihth.

with Bga= ~ Za as ordinate and & (= kp) as abscissa.

According to theory the positive and negative areas
included by the P curve and the z axis are equal; that
is, there is no resultant lift force but only a simple
couple.
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TABLE I TABLE II
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AmmdlnK to the tra~ldal rule

TABLE III.-(%= 1.0234)
—

n

—
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I

:
4
b

—

Q.
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–7LW4 97792 –la17

–IM26
–16148

–M141 89278 –Lx&Z

TABLE IV

Jw- 2=-lQ- Ql

1
. 9b
.90
.80
.m
.60
.E4
.40
.30
.m
.10

0
-.10
-,:

:40
—.m
-. 60
<!!
-. w
-.96

-1.m

am a ;;gm
. M’S
.10 . KrM
.85 . lm
. bl .Ouba
.64 .a3b5
.i’b .0783
.84 . Om
.91 J@&
.96
.69 . owl

1 . 0!74
.s9 . ~o~

.m
:E . mm
.84 .02&t
. 7b .0244
.64 .0m7
.bl .0174
.36 .0143
.19 .0116
. mm .0103

0 . ml

1 1
.’24 :%
.W
,&o .46
.m .2369

.04
:% –. 1260
.-10 –. !26w
.30 –. 28M
.m –. 44
.10 –. y

o
–. 10 +4
—.a

+3
:ti
—.m :. 12MI

:: :%4
–. m .46
–. $0 . 71m
–. 96 .ams

–L W 1

1
. 7M
.473
.a3

–. lW
–. 25
-. 437b
–.44
–. ~b
—.
–. 147b
o
.1476
.23
.3s26
.44
.437b
.25
.1026

: !%6
–.7184

-1

1 1
.6641 .3727

–. 0411
–: z .-. w
–. 412 –. 3662
–. 4oa –. 1623
–. m .OsE#
–. 113 .2703

.0723 .343-4

.232 . 307b

.33m .1788

.376 0

.2979 –. 178s

.23!2 –. 207’6

.0729 –. 3464
–. 113 –. 2762
–. ‘z?4 –. Cw8
–. m . Ib23
–. 412
–. 223 :%

.m .0411

. L5b41 –. 3727
1 -1

0.3236 C107J
.3?32
.3431 .2223
.3641
.?s36 :E
. 41cbl . Zma
. 4W6 .2074
.4645 .3233
.4947 .3465
. b271 .3728
.’5329 .4034
.tawl .4259
.6419 .4716
..2572 .6113
.7W7
.7007 :%
.8W3 . 65s1
.9166 . 71&2

.7’WI
i%%’ X_&
L 16.53
L 2167
L 271b i%?

a 13E3
.1411
. 14m
.1602
.1740
. la
.2W.6
.22b3
.2460
.%2s3
.2947
.3zm
.3s3$
.3576
. 42&s
.4EM
. b183
.bi!a
. ml

:%!

:E
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TABLE IV—Continued

dP1
z

dpl

T

s
Z83

$:
210
L81
LSI
L20
.U3
.00
.3

0
—.3fJ
—.

:
--i m
–La
–Lbll
–210
-240
—2 io
-z @5
–3

v

—.

a :5

:;
.6
.5
.4

::
.1
0
—.
—.;
—.3
—.4
—.‘5
—. 6
—.
—.;
—.
—.%3

dQl
-m 2

-& ma
-o. m
-eL 3970
-7.0476
–7.7827
-K 0222
–9.6829
-la m
-LL 9710
-X3.4EOI
–16.XB7
-17.2778
-le. 7XL5
–22 6?34
-x 2s94
–30. 7136
-25.2774
-& X71
-52s123
-64 3s6
-80. 67s4
-9L ml.!

-la 4671

‘ %-)X7O.u

L ml
L 22.57
L 2@7
L 2443
L f4196
L 1966
L 1724
L lm
L lm
L 102S
LW6
L ml
ptE&

L 0217
L W4
:W42
.W22
.9718
.O&a
.om
.Wa
.Wo

‘--(%)’
—

–7.Zc3
–7.Ecb27
–7.am
–a S3W
–9.3376
–III2431
–IL 2iW
–12 4523
–13.8145
–l&m
–17.2203
–w. 3R34
–21 9413
–26.OWI
–2a m
-a 2786
-?& !a2
–40.lWI
–m. mu
-07.6552
–m. 97%3
–04.6426
–Io7.c@65

10
9. ‘a32a
6.0375
2%
.7#5

––ifa6
–1S
–L 7775
–L 30
–.7326
0
.7326
1%
L m6
LS3
:Eg25

–.7EZ6
–203
-&Cum
-9.9323
-10

–27aE’
-20043
–2.aw
–3.EMU
-4a242
-40072
–s.m
-o.W62
–7.0531
–a lEW
–9.EW3

–11 2Q22
–14 1961
-l& @J@
–16. 7W3
–22 5146
–27. 3%4
–23. ml
-4L 34L?4
–52 9372
–6?. m
–77. 0464
–8Q.7418

1
.2341

-.0270
-.2167
–.m
-.2726
-.26s1
~ ~z

-. 17m
–. 1437
-.1124
-. ml
-.0606
-: W&

.6322

.6s23

.UW2

. la30

.1338

. 1W9

.W

:26%s
4.576

; ;76
L2
.95

:825
-L2
-L425
-1.5
-L426
-L2
–. p

-:375

k ?75
3.3
45i5
hms
6

—

TABLE V

8
!nl sin h

n(n+l) Pm-.ud$

n= 1

9.Zls6
10.Q36
10.873
11742
12722
13.831
15.Oa2
16.541
13.m
2QW3
224M
25.U53

$%
aam
42 W
4Q912

z%
8%248
W.020

2

Q0431
lcl 017
la W
11739
12763
13919
1$m
16.736
l& 461
m 4e0
22 ml
+L 642

E%
37.642
4Xm
6cl821
m. 456
zL@36

lE F

6

7.206i
7.070f
&496!
9.m

~~

;~ ~6

M 4s9

2%
Xx$
27.676
3L 801
3a 914
43224
EL 104
6L 261
74513
92124

lal 36

——
2

: gs

.34

~. E
–L m
–104
–z 40
–276
–% 94
–3
–294
–276
–246
–204
–L M
—.84
-.

.H

;%

3

Q Ima
9.4s53

lCL324
11201
u 318
1%612

.14W9
M.423

E%
22!!s
28.627

%%!
37.w
4LQ36
61 MO
OL221
74011
91 W

10LSS

4

am
K W9
9.4W

la 443
IL .513
12726
14105
16.m
17.m
la 625
220a2
%964
a 440
326m
37.w
4%852
616’30
6L 423
74616
9L 345

lo??91

n-l

Q.QJ
.9

:;
.6
.5
.4

:;
.1

0
-.
-. :
-. 3

:. f
-. 6
-.
—.;
—.
—.95

3 4

3.6160
LM86

–L W
–x m
-6.04
-6.4376
–6. 16
-43426
–3. 12
–; 0276

L &476
3.12
.44

& 4375

:&5

–L6W
–% 61@l

L 04.ss
–L 2480
–7. 02a

–13. W76
-a 34
-4 W&$
–LW3

L W21
4.912
0.8321
7.b
II 8321
4.912
L 6921

-LfUS
-4 W38
–x 84

–-; g5

– L 2480
L W54.1

-a 1094
–. 1269
–. 1Z)7
-. M91
-. a300
–. ml
-.0102
-: ~

.m

. M41
; &#&

.0619

.0tW3

. M9

.0416

. @376
:j3#

.0196
——


